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Abstract—There is an increasing demand for evolving software
systems to deliver continuous services of no restart. Dynamic
software update (DSU) aims to achieve this goal by patching the
system state on the fly but is currently hindered from practice
due to non-trivial cross-version object state transformations. This
paper revisits this problem through an in-depth empirical study
of over 190 class changes from Tomcat 8. The study produced an
important finding that most non-trivial object state transformers
can be constructed by reassembling existing old/new version
code snippets. This paper presents a domain-specific language
and an efficient algorithm for synthesizing non-trivial object
transformers over code reuse. We experimentally evaluated our
tool implementation PASTA with real-world software systems,
reporting PASTA’s effectiveness in succeeding in 7.5× non-trivial
object transformation tasks compared with the best existing DSU
techniques.

Index Terms—Software maintenance and evolution, dynamic
software update, object transformation, program synthesis.

I. INTRODUCTION

Dynamic software update (DSU, updating software at
runtime without restarting) [1] is a trending feature in modern
software systems. DSU keeps systems up-to-date with security
patches, bug fixes, and feature upgrades without hurting the
systems’ availability. DSU has become increasingly practical
and compelling [1–8]: Linux Kernel [9–12] and Microsoft
Windows [13] are already dynamically updatable to some
extent; Java Virtual Machine (JVM) has been modified to
partially support application updates [14–18]; live-upgradable
components are also emerging in databases [19–21], servers [22–
24], and even mission-critical systems [25].

Despite that code can be hot upgraded in emerging
systems [24, 26], automatically updating runtime states for
seamless system evolution remains a major research chal-
lenge [15, 27, 28]. Software updates may include a field of a
class being added, removed, or semantically changed in a new
version. In DSU, such field values (if not removed) should be
(re)computed to match the new version code’s semantics. This
is known as the object transformation problem, whose solution
typically relies on a key mini-program (a.k.a. a transformer)
for computing these field values at update time.

To understand the challenges in object transformation, this
paper empirically studied 100 uniform-randomly sampled
commits (consisting of 190 class changes) from Apache
Tomcat 8 [23], one of the most popular Web backend systems.
Our major findings include:

1) Almost all (187, or 98.4%) class changes can be updated
dynamically, indicating that DSU is broadly applicable.
Even for a few cases (3, or 1.6%) that DSU is impossible
over existing programs, proper refactoring could still make
them updatable [4, 29, 30].

2) Most (166, or 87.4%) updates involve trivial object trans-
formations over simple predefined rules. Existing DSU
systems [15, 17, 18] are already capable of automatically
updating these changes without developers’ intervention.

3) The rest, not many but a non-negligible portion of class
changes (21, or 11.1%) require non-trivial object transfor-
mations. Software developers without a DSU background
would have substantial difficulties in specifying them, as
the required transformers have to carefully manipulate
two versions of program states simultaneously.

The empirical study results suggest that the key obstacle
that hinders the continuous and automatic deployment of
DSU in practice is probably how to obtain non-trivial object
transformers. Unfortunately, this circumstance has not been
seriously recognized by existing research. In fact, our later
experiments show that state-of-the-art techniques, like TOS [27]
and AOTES [28], could only succeed in 0 and 2 out of 25 non-
trivial object transformation tasks. Their apparent high success
rates in past experiments might be due to mixing non-trivial
transformers with many trivial ones.

In this paper, we leverage another key empirical finding that
object transformers can be constructed by reassembling existing
old/new version code to establish an algorithm for synthesizing
object transformers in the DSU of Java applications. The
algorithm exhaustively and heuristically enumerates all possible
combinations of extracted code snippets, producing both test-
passing and developer-readable object transformers. A key
advantage over existing techniques [27, 28] is that an appli-
cation developer can easily verify synthesized transformers’
correctness because application code is their major constructs.

We implemented our algorithm as the PASTA (PATCH
STATES) tool for DSU of Java programs. The evaluation
results over a set of non-trivial class changes (including
those in the empirical study and more) were encouraging:
PASTA synthesized 7.5× correct non-trivial object transformers
(60.0%) compared to the best existing techniques TOS [27]
and AOTES [28] (0.0% and 8.0%, respectively).

In summary, this paper’s major contributions are recognizing
the non-trivial object transformer synthesis as a critical problem



in DSU and providing it with an effective approach. The rest of
the paper is organized as follows. Section II gives the necessary
background knowledge of DSU with a motivating example.
Section III presents a comprehensive study on DSU of 190
class changes in Tomcat 8. Our DSL and synthesis algorithm
are elaborated on in Sections IV and V, respectively. The
evaluation of PASTA against real-world updates is described
in Section VI, followed by threats to validity discussions in
Section VII, related work in Section VIII, and conclusion in
Section IX.

II. BACKGROUND AND MOTIVATION

A. DSU Systems and Object Transformation

This paper focuses on the DSU of Java programs1, which
consists of the following four steps:

1) Pause the program under update at a safe point [10, 31],
e.g., when all updated code is popped off the stack [15, 17].

2) Upgrade the changed code [32, 33] via dynamic link-
ing [34], live patching [10], or hotswap [26].

3) Transform stale (old-version) objects in the heap to their
new state [27, 28].

4) Resume the updated program’s execution. The new version
is now ready to serve.

Object transformation (the third step) is this paper’s primary
focus. When a program is paused at an update-safe point
with code being upgraded, the heap may contain stale objects
whose values are inconsistent with the new-version code. A
DSU system must for each such object invoke its transformer
to migrate to its corresponding new-version.

B. Motivating Example

Figure 1 lists a class change to SocketProcessor, which
requires a non-trivial transformation. This class change replaces
the socket field by ka with a type change from NioChannel
to KeyAttachment (Lines 2–3). We correspondingly provide
an object transformer DSUHelper.transform (Lines 16–28).

The status field undergoes a default (or trivial) transfor-
mation: it inherits its value from the old-version (Line 18).
A default transformation copies the old-version value for a
type-unchanged field or assigns a default value (e.g., 0 for int
and null for references) to a newly-added field [15, 17].

However, the ka field requires a non-trivial transformation2.
If we leave ka with a default null reference, the program will
quickly crash after DSU. Our transformer in Figure 1 leverages
the program’s implicit invariant that there is a 1-to-1 mapping
between NioChannel objects and KeyAttachment objects in
the heap. Lines 21–26 invoke a chain of I/O channel APIs to
find stale.socket’s corresponding KeyAttachment object.

Providing non-trivial object transformers is considerably
challenging even for experienced developers: it requires ex-
pertise in both the application logic and DSU system, where

1DSU and object transformation for unmanaged heaps (e.g., C/C++) are
considerably different and are out of this paper’s scope. However, arguments
in this paper can also be applied to other managed runtime systems.

2An object transformer is considered trivial if it contains only default
transformations, otherwise is non-trivial.

1class SocketProcessor {

2- private NioChannel socket = null;

3+ private KeyAttachment ka = null;

4 private SocketStatus status = null;

5 public void run() {

6+ NioChannel socket = ka.getSocket();

7 SelectionKey key = socket.getIOChannel().keyFor(

8 socket.getPoller().getSelector());

9- KeyAttachment ka = null;

10- if (key != null)

11- ka = (KeyAttachment)key.attachment();

12 ... } ...

13}

14

15class DSUHelper {

16 static void transform(SocketProcessor? obj, SocketProcessor stale) {

17 // trivial default transformation for status

18 obj.status = stale.status;

19 // non-trivial transformation for ka

20 obj.ka = null;

21 NioChannel socket = stale.socket;

22 if (socket != null) {

23 SelectionKey key = socket.getIOChannel().keyFor(

24 socket.getPoller().getSelector());

25 if (key != null)

26 obj.ka = (KeyAttachment)key.attachment();

27 }

28 }

29}

Fig. 1: A class change in Tomcat-8 (commit #f4451c) whose
object transformation is non-trivial. DSUHelper is our manually
provided object transformer. At update time, the DSU system
for each (stale) object sp (of type SocketProcessor) creates
its corresponding uninitialized new-version object sp? (of type
SocketProcessor?, the same class after update) and invokes
the object transformer DSUHelper.transform(sp?, sp).

the latter is typically lacking for most application developers.
Sometimes, a DSU system may automatically synthesize a
non-trivial object transformer, however, our empirical study
results in Section III show that existing techniques fall short on
most real-world cases. For this motivating example, TOS [27]
incorrectly falls back to the default null assignment because
the non-trivial transformer is beyond TOS’s search capability.
AOTES [28] also fails in synthesizing a method history for
such complex objects.

C. Discussions

Interestingly, the key non-trivial step in our manually
provided transformer, which retrieves the SelectionKey from
an NioChannel object in Lines 23–24, is identical to the code
in Lines 7–8. The null-check in the transformer (Lines 25–26)
can also be found in the old-version code (Lines 10–11), which
is removed in the new version because the local variable ka is
available through the newly added field (Line 3).

This should not be considered completely incidental. If
there is a code snippet for computing an object’s property
that reflects an internal invariant (potentially useful for object
transformation like the code that finds the SelectionKey for
a given NioChannel object), the code snippet might also be
useful to other parts of the program and is likely to exist in
the source code.
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Fig. 2: Taxonomy of the 190 changed classes in Tomcat 8.

This observation motivates us to explore the possibility of
automatically synthesizing object transformers by reassembling
existing code snippets, including both old and new versions of a
program. This observation is further validated in our empirical
study in Section III, and then implemented as a heuristic search
algorithm in Section V.

III. EMPIRICAL STUDY

In this short empirical study, we seek insights for under-
standing the challenges of object transformation in DSU over
a set of randomly sampled real-world class changes.

A. Methodology

We empirically studied the applicability of DSU in the
evolution of Apache Tomcat 8 [23], one of the most popular
Java Web servers. Tomcat 8 is still under active maintenance
upgrades since its first release in 2013, making it a suitable
subject for studying DSU. We uniform-randomly sampled
100 commits from all 2,114 Tomcat 8 commits in its entire
maintenance history by the paper was written (from 8.0.0 to
the latest release 8.0.53). The sampled commits consist of in
total 190 class changes3.

For each changed class, we manually inspected the program
state at a hypothetical update-safe point in which all changed
methods of the class are popped off the stack. We determine
whether object transformation is possible (i.e., whether DSU is
applicable) at that point and try to provide each of 2,957 fields
in the 190 changed classes a transformer. Given a class change
that can be dynamically updated, its object transformer is
considered trivial if all of its field transformations are default
(explained in Section II). Otherwise, the non-trivial object
transformer has at least one field that requires non-trivial
transformation (like ka in Figure 1).

To validate our observation that non-trivial transformers can
be constructed by reassembling existing code snippets, we
preferred reusing old/new version code statements with minor
revisions. We collect and analyze the statistics of those reused
statements in constructing transformers.

B. Results and Findings

The statistics in Figure 2 first indicate that DSU can be
broadly applicable in a program’s maintenance lifetime:

3Commits that do not change the Tomcat-core source code (e.g., documen-
tation or test case updates) are excluded from the study because they are
irrelevant to DSU. 190 are all class changes because changes to Tomcat 8 are
mainly maintenance upgrades.

FINDING 1. Almost all changed classes (187/190, or 98.4%)
are dynamically updatable using either trivial default or non-
trivial provided object transformers.

In the three failing cases, two of them added new fields
whose values are only available in an already popped stack
frame. Another one is a fix for a resource leak in which
whether an object is leaked cannot be effectively determined.
Fortunately, refactoring the program to discard partial states at
a component level [4, 29, 30] can make them updatable.

Furthermore, we found that simple default object transfor-
mation suffices in most cases:

FINDING 2. Most class changes (166/190, or 87.4%) can be
dynamically updated via trivial object transformers.

133 out of the 166 class changes (80.1%) involve only
code logic upgrades that do not affect the concerned objects’
data representations, i.e., field values are unchanged. A typical
example is a security patch. The rest 33 (19.9%) class changes
can be automatically handled by a DSU system’s default
policy [15, 17, 18], e.g., assigning a newly created field with a
default value or garbage collecting a removed field’s referred
objects.

Finally, class changes that require non-trivial object trans-
formers are of particular research interest:

FINDING 3. Not many but non-negligible class changes (21/190,
or 11.1%) require non-trivial object transformers4. These
changes substantially hinder the application of DSU in practice.

For these updates, the upgrade maintainer can manually
provide an object transformer to enable DSU over such non-
trivial class changes. However, this is not an easy task because
non-trivial object transformers usually exploit a program’s
implicit invariants or object state constraints (like the example
in Figure 1). Automatic transformer synthesis [27, 28] can
be a promising and highly-preferred solution. Unfortunately,
our later experiments show that even the best state-of-the-art
technique produces correct transformations in <10% of these
non-trivial class changes.

Therefore, the general unavailability of non-trivial object
transformers should be recognized as a key obstacle in making
DSU practical. To address this challenge, we examined the
characteristics of our manually crafted object transformers to
find potentially useful guidance for automatic object trans-
former synthesis. Figure 3 summarizes the basic constructs
in our manual transformers, which can be concluded by the
following finding:

FINDING 4. Default transformations and existing code snippets
are the major constructs of a non-trivial object transformer.

The basic constructs of the 21 non-trivial object transformers
are: 42 right-hand side expressions of assignments, 15 if-
then-else branch conditions, and 2 for-each loop conditions.
Understanding the characteristics of these basic constructs
is critical to the development of an automatic transformer

4Dynamically updating such a class with a default transformer will result
in a crash or broken application logic.
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Fig. 3: Statistics of the basic constructs in the studied non-trivial
object transformers.

Transformer t ::= s∗

Statement s ::= v = e;
| obj.f = e;
| if (c) { s∗ } else { s∗ }
| while (c) { s∗ }

Condition c ::= e | e == null | !c
Expression e ::= v | g(v∗)
Gadget g ::= extracted gadgets
Variable v ::= stale | v1 | v2 | . . .

Fig. 4: Syntax of basic constructs in object transformers. f is
a field subject to transformation; stale and obj are the stale
object and its corresponding new-version object; a∗ denotes
zero or more repeats of a.

synthesis mechanism. As shown in Figure 3, the vast majority
(54/59, or 91.5%) of the basic constructs are either:

1) a trivial default behavior (13/59, or 22.0%),
2) a single member method call (12/59, or 20.3%),
3) a simple null-check (7/59, or 11.9%), or
4) a minor revision of an existing source code snippet (22/59,

or 37.3%) like Lines 23–24 in Figure 1.
Such a result motivated us to synthesize object transformers

by assembling source code gadgets (extracted expressions from
old/version source code) upon a domain-specific language
designated for the object transformation in DSU.

For the remaining a few (5/59, or 8.5%) basic constructs,
three of them are boolean configuration-related constants
whose values are determined by an update-time configuration.
The other two expressions need a reference that is not reachable
from stale objects. Since this paper focuses on the automatic
synthesis of object transformers, we leave these relatively rare
cases to future work.

IV. DOMAIN-SPECIFIC LANGUAGE FOR OBJECT
TRANSFORMATION

This section explains our design goals and choices in
our domain-specific language (DSL) for describing object
transformers. The DSL design and gadget extraction are
described in Sections IV-A and IV-B, respectively.

SelectionKey key = socket.getIOChannel().keyFor(
socket.getPoller().getSelector());

g1 = 〈�1.getIOChannel().keyFor(�2.getPoller().getSelector())〉

extraction

if (name.startsWith("selectorPool."))

g2 = 〈�1.startsWith(�2)〉
g3 = 〈"selectorPool."〉

g4 = 〈�1.startsWith("selectorPool.")〉

extraction

while (paused && !running)

g5 = 〈�1 && !�2〉

extraction

Fig. 5: Examples of extracted gadgets.

A. The Language Design

Following the empirical findings that default transformations
and existing code snippets are the major constructs of a non-
trivial object transformer, we made the following choices in
the DSL design:

1) Providing a mechanism for code reuse. Particularly, we
provide a DSL construct named gadget, as denoted by
g(~�), a textural expression extracted from source code
with all variable references being replaced by a place-
holder. We use angled brackets to enclose a gadget, e.g.,
g(�1, �2, �3) = 〈�1.foo(�2,�3)〉. Applying a gadget to
an object transformer would reuse the entire expression
with the flexibility for placeholders to be filled with
transformer-specific values.

2) Providing no arithmetic, logical, or bitwise operator. We
argue that when such operators (+, &&, |, . . .) should
appear in an object transformer, they will also likely to
exist in old/new version source code and can be extracted
as gadgets. Therefore, we do not have to include them in
the DSL, yielding a minimal, concise DSL.

3) Providing limited expressiveness for branch/loop condi-
tions. Branch/loop conditions in object transformers are
also likely in the existing source code. Therefore, nega-
tions, nested branches, and while-loops provide sufficient
expressiveness for constructing object transformers.

Figure 4 lists the syntax of our DSL. An object transformer
t is a sequence of statements s∗, in which each field of the
new-version object obj is assigned with a value. For each
statement s, it can define a new variable vi by applying a
gadget g5 and filling its placeholders with existing variables (a
previously defined vi or stale), assign a field to be transformed
(obj.f ) with a value, or use if branches or while loops with
a condition c.

Readers may notice that the statements in a transformer t
describe a skeleton, which specifies the targeted transformer’s

5We allow a void-typed expression to be assigned to a variable, i.e., g can
be a void method invocation.



control flow (branches and loops) and data flow (variables and
their dependencies). All concrete transformation operations
are performed by gadgets extracted from the source code.
Such a separation of concerns not only maximally reuses
existing source code, but also gives considerable flexibility to
implement diverse transformers. This design also facilitates our
later heuristic synthesis algorithm to prioritize likely relevant
object transformers by measuring both the structural complexity
of a synthesized transformer and its “naturalness” in gadget
use.

One final note is that we restrict branch/loop conditions to
be either of e, !e, e == null, or e != null, where expression
e is either a variable or a gadget application. Theoretically,
any condition can be expressed by negation (¬) and nested
branch (∧), but both our DSL and synthesis algorithm favor
simple branch/loop conditions that reuse existing source code
snippets.

B. Gadget Extraction

In gadget extraction, trade-offs must be made to balance the
DSL’s expressiveness and its synthesis difficulty. In an imprac-
tical extreme, one can include all Java language constructs as
gadgets. This allows our DSL to be essentially equivalent to the
vanilla Java. However, synthesizing Java programs directly for
object transformation is considerably difficult and not practical.

The key trade-off we made is to only extract complete source-
code statements as gadgets. We argue that no matter how many
times method invocations, arithmetic/logical operations, etc.
are performed in a statement, they should either be all used
or entirely not used in an object transformer. The intuition
behind this treatment is simple: each statement should contain
a logically inseparable action in a well-maintained project for
best readability and maintainability6.

Gadgets are extracted by iterating over all statements in all
application classes in both the old and new version source code
using the following rules:

1) For a statement’s associated expression (i.e., the right-
hand side of an assignment or an if/while condition),
we parse it into an abstract syntax tree (AST) and replace
each variable or constant node with a placeholder �i to
be a gadget. This rule yields g1, g2, and g5 in Figure 5.

2) For each statement, we consider its contained constants
potentially useful in synthesizing object transformers.
Therefore, each constant literal in the statement is also
extracted as a gadget. This rule yields g3 in Figure 5.

3) For each statement, we also extract it into a gadget where
only variable nodes are replaced by placeholders, i.e.,
keeping all constants as-is in the gadget compared with
the first rule. This is because constants may be inseparable
from the statement’s computational logic. This rule yields
g4 in Figure 5.

4) For each class in both old and new versions of the
source code, we extract class field gadgets 〈�.fieldName〉,

6There can be occasions that a statement consists of multiple actions, e.g., a
chain of method invocations. We optimistically believe that the desired action
will independently appear elsewhere in the codebase.

g1(�1) = 〈�1.socket〉
g2(�1, �2) = 〈�1.getIOChannel().keyFor(

�2.getPoller().getSelector())〉
g3(�1) = 〈(KeyAttachment) �1.attachment()〉

1class DSUHelper {

2 static void transform(SocketProcessor? obj, SocketProcessor stale) {

3 v1 = (NioChannel) g1(stale);

4 if (v1 != null) {

5 v2 = (SelectionKey) g2(v1, v1);

6 if (v2 != null) {

7 v3 = (KeyAttachment) g3(v2);

8 }

9 }

10 obj.ka = v3;

11 }

12}

Fig. 6: A field transformer for field ka in the motivating
example written in our DSL, and extracted gadgets. All used
variables were initialized with default values, e.g., v3 = null.

Algorithm 1: The transformer synthesis framework
1 Function SYNTHESIS(G)
2 Q← {|.};
3 while Q 6= ∅ do
4 p← argmin

p′∈Q
cost(p′);

5 if |. /∈ p then
6 yield p;

7 Q← Q ∪DG(p) \ {p}

class method gadgets 〈�.methodName(~�)〉, static field
gadgets 〈ClassName.fieldName〉, static method gadgets
〈ClassName.methodName(~�)〉, and object creation gad-
gets 〈new ClassName(~�)〉. These rules are also addition-
ally applied for the Java Standard Library for extracting
potentially useful API calls, e.g., container operations.

Figure 6 gives a transformer example for field ka in our
motivating example (Figure 1). Three used gadgets g1, g2,
and g3 are extracted using rules #4, #1, and #1, respectively.
This transformer is equivalent to the manually provided one in
Figure 1.

One could expect that our DSL and gadget extraction rules
suffice for object transformer synthesis. Unfortunately, there
can be millions of gadgets extracted from a large codebase.
Certainly, not all gadget combinations are equally relevant to a
given upgrade. The relevance of a gadget to the class change
and the similarity between a gadget combination and existing
source code would serve as the guidance for efficient object
transformer synthesis, which is described as follows.

V. AUTOMATIC SYNTHESIS OF OBJECT TRANSFORMERS

Conceptually, object transformer synthesis is simple: a
systematic enumeration of all syntactically correct programs
will eventually find a correct transformer (Section V-A). This
section presents our heuristic search algorithm for efficiently pri-



oritizing correct and developer-readable (simple) transformers
to make the search procedure practical (Sections V-B to V-D).

A. Synthesis Framework

Given a set of gadgets G, our object transformer synthesis
algorithm listed in Algorithm 1 is essentially a straightforward
syntax-directed search. It maintains a work list Q consisting of
candidate synthesized programs. A program p ∈ Q is an object
transformation DSL program (syntax defined in Figure 4) with
zero or more insertion marks |. in which more statements can
be filled7. Starting from the initial program that consists of a
single insertion mark |. in Q (Line 2), the algorithm iteratively
pops the program p of the minimum cost in Q for a step of
expansion (Lines 3–4). If p contains no insertion mark, we find
a potentially useful transformer for further validation (Lines
5–6). Otherwise, there must be an insertion mark |. in p and
the algorithm expands the first insertion mark to obtain more
candidate programs (Line 7).

The expansion step defines DG(p), the descendant programs
of p over a set of gadgets G. Let σp be the first occurrence
of insertion mark in p. A step of expansion either closes (i.e.,
removes) the insertion mark σp to obtain

pε = p[σp 7→ ε],

or prepends it with a statement stmt to obtain

pstmt = p[σp 7→ stmt |.].

In the latter case, let V (σp) = {stale, v1, v2, . . .} be all
variables within the lexical scope of the insertion mark σp
in p. For a gadget g ∈ G of n placeholders, the set of its all
possible applications at the insertion mark is defined by

Eg(σp) = {g(v1, v2, . . . , vn) | vi ∈ V (σp) for 1 ≤ i ≤ n}.

All syntactically valid expressions at σp are thus

EG(σp) = V (σp) ∪

⋃
g∈G

Eg(σp)

 .

To prepend a statement stmt at σp, it must be either of the
following four patterns according to the syntax in Figure 4:

1) (variable assignment) v = e;
2) (field transformation) obj.f = e;
3) (if-branch) if (c) { s∗ } else { s∗ }
4) (while-loop) while (c) { s∗ }

Also recall that we limit the form of a condition c to be either
of {e, !e, e == null, e != null}. Therefore, stmt must
consist of exactly one expression. Enumerating the expressions
e ∈ EG(σp) and filling e into the above code patterns yields
S, the set of all possible statements to prepend to σp. For
an assignment v = e, the left-hand side variable v is also

7Given a program and an insertion mark in it, one can prepend a statement
before the insertion mark to obtain a new program. |. is equivalent to s∗ in
the syntax.

enumerated (over v ∈ V (σp)\{stale}). Then, the descendants
of p can be defined as

DG(p) = {pε} ∪ {pstmt | stmt ∈ S}.

Though conceptually simple, it is a challenge to scale the
search. The key treatments we made to boost the search include
decomposing an object transformer into independent field
transformers (Section V-B), pruning likely irrelevant gadgets
(Section V-C), and boosting the search by measuring the
“naturalness” of p (Section V-D).

B. Object Transformer as Independent Field Transformers

An object transformer is responsible for transforming all
fields in an object, and an object transformer for large classes
may be lengthy and difficult to synthesize. Fortunately, the
program is frozen at update-time and each field’s value should
be computed by a pure function over the update-time heap
snapshot.

Therefore, the transformation for fields in an object can be
independently conducted and the object transformation problem
is essentially equivalent to the field transformation ones. In
practice, a developer or upgrade maintainer simply specifies
which fields may require a non-default transformer, and the
synthesis algorithm will produce a series of candidate field
transformers for further validation (e.g., independently tested).
This is a standard treatment of existing techniques [15, 27, 28].

C. Pruning Irrelevant Gadgets

There can be millions of gadgets for a large program,
resulting in a huge |EG(σp)|. Fortunately, we observed that
most of the gadgets are irrelevant to the field to be transformed
in terms of the upgrade. Particularly, class B is relevant to A
if either: B is a (sub)class of A, B contains a field of type
A, or a method in B refers to A (e.g. in the parameter list
or a local variable, etc.). To synthesize a field transformer for
field f in class A (e.g., A = SocketProcessor and f = ka
in Figure 1), we restrict the concerned gadget set G to be:

1) all gadgets in A,
2) all gadgets in any class relevant to A, and
3) all gadgets in any class relevant to f.class.
Finally, almost all classes are relevant to primitive types (e.g.,

int, bool, etc.) and java.lang.String. We do not apply the
third rule in synthesizing field transformer for these types, as
otherwise, the search would be intractable.

D. Boosting the Search

A naive implementation of Algorithm 1 will be overwhelmed
by the huge search space. For example, |Eg(σp)| grows
exponentially over increased |V | and |~�|. In our search
implementation, we only fill a placeholder �i with a type-
compatible variable in the scope that will not trivially throw
an exception (e.g., invoking a null reference’s method). This
treatment yields a manageable |Eg(σp)| in practice.

The key to the success of our search algorithm is a cost
function cost to prioritize: (1) simple programs with few basic



constructs, and (2) natural programs that maximally reuse
existing method-local data flows in the source code.

To measure the naturalness, we perform an intra-procedural
forward slicing [35] for each extracted gadget g to obtain

slice(g) = [g1, g2, . . .],

the sequence of gadgets (appearing in their statement order)
in which each gadget g′ ∈ slice(g) data-depends on g.

Given a program p and its used gadgets Gp = [g1, g2, . . . ,
gn], we argue that the programs that better reuse consecutive
gadgets in a slice (i.e., existing data flow) are more likely to be
natural. Formally, for each gadget gi ∈ Gp, we find its maximal
containing slice Sp(gi), the slice(gj) of maximum length
satisfying that for gj ∈ Gp and slice(gi) ⊆ slice(gj). The set
of all maximal containing slices is thus Sp =

⋃
1≤i≤n Sp(gi).

We measure the naturalness of p by calculating the average
data-flow similarity for all maximal containing slices:

δ(p,G) =
1

|Sp|
∑
S∈Sp

max
1≤i≤j≤|S|

LCS(Gp � S, Si:j)
max {|Gp � S|, |Si:j |}

,

in which LCS is the longest common subsequence, and Gp � S
is the subsequence of Gp obtained by removing any element
not in S. The intuition behind this formula is that a program p
of a high δ should look like a “blending” of gadgets in short
slice sequences.

Finally, we add the measurement of simplicity to the cost
function cost . Recall that our synthesis algorithm (Algorithm 1)
either closes an insertion mark, or expands it by prepending a
statement in an iteration:

pε = p[σp 7→ ε] or pstmt = p[σp 7→ stmt |.].

Thus we define the cost function to be cost(pε) = cost(p) and

cost(pstmt) =

∑
p′∈H

|p′| · rank(p′)

 · 1

δ(pstmt) + λstmt
,

where H is all partial programs in the process of generating p
(by applying the two rewriting rules of the insertion mark), |p′|
denotes the number of statements (assignment, branch, or loop)
in p′, and rank(p′) is the rank of p′ in terms of naturalness (δ)
within all generated siblings in the expansion step in obtaining
p′. Using rank in the cost function reflects the intuition that
one should not only favor short (and thus simple) synthesized
programs, but also favor those programs whose generation
processes are mostly natural.

The cost function also contains a mechanism (λ in the
formula) for giving likely more relevant statements with extra
credits. Our implementation adopts a simple rule that lets
λstmt = 0.2 if stmt involves any changed field (e.g., Lines
6–8 in Figure 1) or the corresponding gadget is from the
changed code (e.g., Line 11 in Figure 1). Future use of this
mechanism can be assigning human-provided gadgets with a
higher priority.

VI. EVALUATION

We implemented the synthesis algorithm as the PASTA tool,
which consists of ∼15,000 lines of Java code8. The source code
parsing and extracting gadgets was implemented over Java-
Parser [36] and Javassist [37]. In this section, we experimentally
compare PASTA with two state-of-the-art techniques using real-
world updates from Apache Tomcat 8 and Apache FtpServer.
We elaborate on the experimental setup in Section VI-A and
present the evaluation results in Section VI-B.

A. Experimental Setup

The three transformer generation techniques under evaluation
are: our PASTA, program-synthesis-based TOS [27], and trace-
synthesis-based AOTES [28]. We evaluate these techniques
against a set of class changes that require non-trivial object
transformation from widely-used server applications undergoing
long-term development and maintenance. As discussed in
Section V-B, each field in an object can be independently
transformed. Therefore, the evaluation subjects (first two
columns in Table I) consist of:

1) The 22 Apache Tomcat 8 field updates studied in the
empirical study (Section III);

2) Another 4 Apache FtpServer field updates selected fol-
lowing the same collection methodology of our empirical
study.

For Apache FtpServer, we uniform-randomly sampled 30
commits (consisting of 75 class changes) from all 244 commits
with class changes in the entire maintenance history of Apache
FtpServer (from 1.0.0 to the latest 1.0.6). In the 75 class
changes, 71 can be dynamically updated via a trivial object
transformer. The rest four non-trivial cases (4 field updates)
were all used as our experimental subjects.

To validate a transformer, we for each changed class provide
sufficiently strong DSU test cases that can cover all locations
writing to the changed field (by revising existing test cases or
manually providing one whenever necessary). For each test
case, we also specify an active-safe [10, 15, 17, 31] dynamic
update-safe point, at which all changed methods in the changed
class are popped off stack. Each test case also checks the object
state consistency after the update point. These checkers take the
heap snapshots before and after object transformation as inputs
and determine whether the object transformation is successful.
We use the same test cases for all the evaluated techniques.

The evaluation settings are:
1) For PASTA, the search depth is set to 10 (sufficiently

large to handle all studied transformers). We automatically
validated each synthesized transformer by running the
DSU test cases and manually checked the test-passing ones
until a semantically correct field transformer is produced.

2) For TOS, we followed the evaluation steps in its paper [27].
TOS requires heap snapshots for field transformer synthe-
sis. Thus we used our test cases for field transformation
correctness validation to produce these snapshots. The

8Available at https://zelinzhao.github.io/pasta.

https://zelinzhao.github.io/pasta


TABLE I: Evaluation results on the real-world updates in Apache Tomcat 8 and Apache FtpServer.

ID Subject ChangedClass.changedField (FieldType) #Gadgets #Tests PASTA AOTES TOS

1 Tomcat-6a940d StandardContext.path (String) 2,373 2 1 / 336 (20.0m) X I× M�S×
2 Tomcat-ec8dff ContextConfig.context (Context) 28,232 3 × I�H× M�S×
3 Tomcat-f84800 WsHttpUpgradeHandler.wsSession (WsSession) 3,098 2 × I�H× M�S×
4 Tomcat-a752f3 AsyncContextImpl.request (Request) 14,927 2 × I�H× M�S×
5 Tomcat-c0d4f7 WsHandshakeResponse.headers (CaseInsensitiveKeyMap) 633 3 1 / 316 (7.6m) X I�H× M�S×
6 Tomcat-c0d4f7 PojoMethodMapping.onMessage (List) 38,475 2 1 / 14 (0.3m) X I�H× M�S×
7 Tomcat-dbb784 SenderState.memberStates (ConcurrentHashMap) 37,234 3 1 / 7 (0.2m) X I�H× M�S×
8 Tomcat-a8d16b MemberImpl.msgCount (AtomicInteger) 6,962 2 1 / 13 (0.2m) X X M�S×
9 Tomcat-358f94 StandardContext.parameters (ConcurrentHashMap) 19,805 2 1 / 45 (1.8m) X I�H× M�S×

10 Tomcat-ad012e FutureToSendHandler.result (AtomicReference) 1,468 2 1 / 4 (0.1m) X I�H× M�S×
11 Tomcat-c0d4f7 WsOutputStream.used (boolean) 76 2 � I�H� M�S�
12 Tomcat-c0d4f7 WsWriter.used (boolean) 77 2 � I�H� M�S�
13 Tomcat-db1a6e StandardContext.useRelativeRedirects (boolean) 2,413 2 � I�H� M�S�
14 Tomcat-69196d StoreConfigLifecycleListener.oname (ObjectName) 12,783 2 1 / 1 (0.1m) X I�H× M�S×
15 Tomcat-2e7c68 Nio2Endpoint.threadGroup (AsynchronousChannelGroup) 3,116 2 1 / 144 (14.0m) X I× M�S×
16 Tomcat-d8ad3c DefaultServlet.showServerInfo (boolean) 1,000 2 1 / 3 (0.1m) X I�H× M�S×
17 Tomcat-5952de WebappServiceLoader.context (Context) 32,325 2 × I�H× M�S×
18 Tomcat-6b64bb StandardContext.noPluggabilityListeners (Set) 40,592 3 1 / 77 (8.7m) X I× M�S×
19 Tomcat-6b64bb StandardContext.noPlug...Context (NoPlug...Context) 12,865 2 × I�H× M�S×
20 Tomcat-766c9e AprSocketWrapper.endpoint (AprEndpoint) 124,569 2 × I�H× M�S×
21 Tomcat-f4451c SocketProcessor.ka (KeyAttachment) 2,430 3 1 / 4 (0.3m) X I�H× M�S×
22 Tomcat-4355ed StandardContext.applicationEventListenersList (List) 50,274 3 1 / 27 (1.4m) X I�H�R× M�S×
23 FtpServer-faa153 MinaListener.acceptor (SocketAcceptor) 469 2 1 / 14 (0.3m) X I�H× M�S×
24 FtpServer-32ed0b FtpServer.serverContext (FtpServerContext) 1,789 2 1 / 7 (0.2m) X I�H× M�S×
25 FtpServer-1b2ea6 PropertiesUserManager.isConfigured (boolean) 249 2 × I�H× M�S×
26 FtpServer-afffc8 FileIpRestrictor.file (File) 1,634 2 1 / 154 (2.5m) X X M�S×

Summary 439,868 58 16 (61.5%) 2 (7.7%) 0 (0.0%)

For PASTA, “m /n” denotes that (1) the first semantically correct transformer is in the m-th place among all test-passing transformers; (2) there are n test-runs before the
first semantically correct transformer is generated. The number in the bracket (tm) indicates that the first correct transformer is produced after t minutes. For AOTES, “I×”,
“I�H×”, and “I�H�R×” denote failing at mutator generation, execution history synthesis, and trace replay, respectively. For TOS, “M×” and “M�S×” denote
failing at object matching and transformer synthesis, respectively. � denotes that this update requires a human-provided configuration (thus is out of the scope of automatic
transformer synthesis). We included these cases in the evaluation for completeness: they are indeed non-trivial and may potentially be addressed in future work (e.g., via
providing a gadget by the upgrade maintainer).
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Fig. 7: Statistics of running time, peak memory, and statistics of testing results. The x-axis denotes subject IDs in Table I.

test cases provide sufficiently informative traces for a
human DSU expert to derive correct field transformers.
We also manually checked each synthesized transformer
for semantic correctness.

3) For AOTES, as it does not produce any human-readable
transformer, we consider it correct if all test cases passed
even if it might fail in other online transformations9.
We also inspected the synthesized method histories for
manually diagnosing the root cause in case of a failure.

For each field transformation, we set a moderate 30-minute

9Conversely, AOTES may have a chance to correctly transform the heap in
practice even if it fails on some test cases. We argue that using AOTES in
this case is considerably risky because AOTES is a black-box technique that
silently transforms the heap.

time limit. TOS and AOTES did not time out for all experimental
subjects. All experiments were conducted on a commodity PC
with a quad-core Intel Core i7-4770 CPU and 32 GB RAM
running Ubuntu Linux 18.04.

B. Evaluation Results

Overall Results. The major evaluation results are shown
in Table I. PASTA produced 16/26 (61.5%) correct field
transformers, or 15/25 (60.0%) correct object transformers
(because Subjects #18 and #19 are from the same class). All
succeeded cases are amazingly top-1 hits, i.e., the most “natural”
test-passing transformer is semantically correct. This result
supports our previous claim that the test cases are sufficiently
strong. Compared with the best existing techniques TOS (failed



for all cases) and AOTES (2/26, 7.7%), PASTA made automatic
non-trivial object transformation in DSU significantly more
practical.

Like PASTA, TOS is also a syntax-guided synthesis. However,
the TOS DSL contains only a subset of basic Java language
constructs. Consequently, expressing a practical non-trivial
object transformer would require an unrealistically large search
depth. For example, the most complex transformer produced
by PASTA (#23) consists of a field access, an if condition, two
different string literals, two constructor calls, and four instance
method calls. There is also a transformer (#18) with a branch
in a loop. It is of no surprise that TOS failed on these practical
subjects even with the aid of test traces.

AOTES succeeded only for Subjects #8 and #26 because their
inverse histories happened to be relatively simple (AOTES’s
inherent requirement on successful history synthesis). The
major failure cause for AOTES is generating an incorrect history
(20/26, 76.9%), which is the major drawback hard to avoid for
a runtime state transformer.

Unlike TOS and AOTES in which a correct transformer may
be too complex to correctly synthesize, PASTA “shortcuts” the
solution by gluing gadgets using a simpler DSL focused on
code reuse. For example, AOTES generated a long method call
history for Subject #8, whereas PASTA found a constructor
call to fulfill the same functionality. The evaluation results
suggest that the code-reuse in PASTA could become an effective
approach to object transformer synthesis.
Detailed Analysis. Based on the type of code change, a field
change can be either of:

A field type change with field name unchanged (7 cases;
#5–10 and #26), which was handled best by PASTA. All 7 cases
were successfully transformed. A type-changed field usually
plays a similar role in both old and new versions. They can
likely be used interchangeably somewhere in the source code.
Thus, there may exist code snippets to retrieve the information
contained in this field, which can be used in a transformer.

A field value change with field type and name unchanged
(6 cases; #1–4 and 23–24). PASTA succeeded in 3/6 (50%) of
them. Value change indicates that the semantics of an object
is changed in the update. Since our approach is semantics-
unaware, PASTA has to perform a brute-force search across all
potentially useful transformers.

A new field (13 cases; #11–22 and #25). This includes
renaming a field with a type change, which cannot be
objectively distinguished from adding a new field (e.g., ka
in Figure 1). Excluding the three out-of-scope cases (explained
in the footnote of Table I), PASTA succeeded in 6/10 (60%) of
them. For a similar reason of the “field value change” category,
PASTA is essentially an exhaustive enumeration for this category
of field change.

For all failing cases excluding the out-of-scope ones, we
found that our DSL and PASTA’s extracted gadgets suffice
to construct a correct transformer. However, PASTA was not
able to do sufficiently many explorations to identify them
within the given time limit: the failing cases on average
tested only 2,677 candidate transformers. It is considerably

challenging to assemble gadgets scattered in different parts of
a program (i.e., with a relatively low naturalness score), which
is required in synthesizing field transformers in these cases.
Nevertheless, PASTA as a prototype implementation points out
a promising research direction that reuses existing code in
object transformation.

One may also wonder whether our treatment for pruning
irrelevant gadgets for primitive types and String (Section V-C)
should be considered proper. Excluding the three out-of-scope
cases (#11–13), PASTA successfully synthesized 2/3 (#1,16,25)
of the cases. For the only failing case (#25), the semantically
correct transformer sets the field to be true only when two
conditions are simultaneously satisfied. These two conditions
were correctly identified as gadgets by PASTA, however, it failed
to find them within the time limit. Therefore, our aggressive
policy for pruning irrelevant gadgets should be considered
proper for primitive types.

Considering the resource consumption for conducting object
transformation, a 30-minute time limit should be considered
reasonable for production use10. Figure 7 (a) and (b) display
the statistics of running time and memory consumption,
respectively. Among all succeeded cases, 9/16 (56.2%) returned
the first semantically correct transformer within one minute,
and 14/16 (87.5%) were within 10 minutes. Both the search
algorithm and test validation can also be parallelized to further
accelerate the implementation. However, these engineering
issues are not the major focus of this paper. In terms of memory,
PASTA used less than 4 GB memory for 22/26 (84.6%) of the
subjects. Subject #20 consumed the most memory (∼6 GB)
on time out due to its large number of gadgets (124,569). The
overall results can be considered acceptable for production use.

Finally, to our surprise, our search algorithm even found a
simpler field transformer for field ka of the motivating example
in Figure 1 (Subject #21):
1class DSUHelper {

2 static void transform(SocketProcessor? obj, SocketProcessor stale) {

3 obj.ka = null;

4 if (stale.socket != null)

5 obj.ka = stale.socket.getAttachment(false);

6 }

7}

The gadget �1.getAttachment(�2) in Line 5 was origi-
nally used for creating an NioChannel object’s corresponding
KeyAttachment, which was passed to by a true argument
(thus was considered irrelevant in our manual transformer
construction). However, its behavior of returning an existing
KeyAttachment object is perfectly correct for our expected
object transformation. The transformer in Figure 1 was ranked
in the 5th position, which also passed the tests within the time
limit.
Implications. Both the empirical study and evaluation results
show that the unavailability of non-trivial object transformers
should be recognized as a major obstacle that hinders the
application of DSU in practice. Considering updating Tomcat 8

10Gadget extraction time is less than 5 minute for both Tomcat and FtpServer.
We did not count such pre-processing time.



and FtpServer with state-of-the-art techniques before PASTA,
roughly 18% updates (commits) still require a restart. How-
ever, if all non-trivial cases can be provided with a proper
transformer, the restart rate would decrease to ∼2%.

This paper opens a promising research direction towards
automated object transformation in DSU on code reuse. Consid-
ering the distribution of all updates (commits) in our evaluation,
PASTA can reduce the restart rate by 60.5%, compared with the
best state-of-the-art technique. Considering the rapid advances
in the program synthesis and repair community [38–41], we
are optimistic that most and more non-trivial transformers can
be automatically synthesized in the near future.

VII. THREATS TO VALIDITY

A major threat concerns the generalization of our empirical
study results because Tomcat 8 is the only investigated subject.
Since Tomcat is a mature, actively developed, and widely used
subject extensively studied by existing literature [17, 28, 42–
45], we should consider that the empirical study results reflect
real-world software evolution to a large extent.

There is a minor chance that we erroneously marked a
non-trivial object transformer as trivial in the empirical study
because reasoning about a program’s runtime state is labor-
intensive. (This is also the major reason that we did not
include more evaluation subjects.) Taking such potential error
into consideration, the applicability of DSU in practice may
potentially be more challenging. On the other hand, it also
suggests that object transformation should draw more serious
research efforts.

Another threat to our evaluation results’ validity is that the
experimental subjects partially overlap the ones used in the
empirical study, and the high success rate may be due to
overfitting. We argue that this is not likely the case because:
(1) the design of PASTA follows the general principles of
software systems, and (2) the experiments on Apache FtpServer
also show significant improvements over existing techniques.
Therefore, PASTA should be recognized as useful in conducting
DSU for similarly long-running server applications, which are
actually the major focus of dynamic software updating.

VIII. RELATED WORK

Dynamic Software Updates. To dynamically update a running
system, one must determine:

What to update, i.e., specifying the parts of the system to
be dynamically upgraded, e.g., via a source code patch. This
paper’s focus is the DSU of long-running Java server programs
over maintenance upgrades.

When to update, i.e., monitoring the system execution until an
update-safe point is reached [10, 31]. Existing strategies include
activeness safety [15, 17, 46, 47], con-freeness safety [47], and
transactions version consistency [48]. This paper assumes the
most popular activeness safety criterion.

How to update, i.e., applying the dynamic patch [27, 28]. Con-
ducting the update includes replacing the changed code [32, 33]
and updating the stale objects [15, 46]. Inter-process state
transformation (multi-versioning) maintains multiple execution

flows of the same program during the update, and DSU
is implemented by process replacement [49–51]. A more
lightweight approach is the intra-process strategy, where
dynamic software update happens in-place [15, 17, 18].

Object Transformation in DSU. Both inter- and intra-process
DSUs require object transformation. Object transformation can
be eager [15] (all stale objects are transformed at update time)
or lazy [17] (object is transformed upon access). PASTA works
for both cases.

Our empirical study reveals that a default transformer
(either copies the old-version value for an unchanged field,
or assigns a default value to a newly-added field) suffices
for most dynamic updates. Therefore, it is not a surprise
that default transformation is widely adopted in existing DSU
systems [15, 17, 18, 22, 46, 52]. To perform non-trivial object
transformations, existing DSU work [15, 17, 22, 46] suggests
that object transformers should be shipped along with the patch
to enable DSU in practice.
TOS [27] took the first step in the automatic synthesis of

object transformers. Given paired old/new version objects,
transformer synthesis can be regarded as a programming by
example (PBE) problem, in which syntax-guided search is
usually adopted. However, TOS adopts a Java-alike DSL for
specifying transformers, yielding a huge search space and
subsequent search failures. In contrast, we kept DSL constructs
to a minimal extent and let extracted gadgets to perform the
actual object state computation.
AOTES [28] took a fundamentally different approach to

object transformation. Instead of synthesizing a transformer,
AOTES for each object synthesizes a method invocation history
that brings the object to its current state. The synthesized
history is then replayed (executed) on the new version code
to obtain the transformed object. AOTES has the potential to
scale out (though its current implementation frequently fails on
large systems like Tomcat). However, it is extremely difficult
for a developer to validate the correctness of a transformation,
leaving it risky to use in practice.

Finally, some DSU systems [53, 54] entirely eliminate object
transformations by restricting the update timing, e.g., updates
can only be applied when there is no unsafe event [53] or object
state [54]. Existing object transformation techniques (PASTA,
TOS, and AOTES) are orthogonal to these systems. Generally
speaking, better transformers allow more update timings, and
fewer update timings tolerate simpler transformers.

Program Synthesis. Object transformer is a piece of program.
Thus, PASTA belongs to the family of program synthesis [55–
58]. TOS is inspired by the PBE approaches [59, 60], which
focus on spreadsheet data transformations. Foofah [61, 62]
adopted PBE to synthesize data transformation programs for
data analysis tasks. PASTA aims at generating non-trivial object
transformers, which is a more challenging task.

The design of placeholders in PASTA originates from
program sketching [63–65] in which placeholders are filled
with synthesized code snippets. However, program synthesis
for PASTA is quite different in nature compared with program



sketching: the latter is given a program sketch and placeholders
are filled with limited language constructs (e.g., expressions).
PASTA faces a more open-ended world consisting of a large
number of gadgets without a sketch.

The design of code reuse in PASTA resembles component-
based program synthesis [66–69] in which components (usually
APIs) are assembled to perform designated tasks. Gadgets from
existing code can be regarded as the “components” in PASTA.
However, the search requires careful calibration for efficiency.

There exist also other techniques for improving the effective-
ness of program synthesis (e.g., interactive synthesis [70–74]).
They are generally orthogonal to this paper and are out of this
paper’s scope.

IX. CONCLUSION

This paper recognizes the existence of non-trivial object trans-
formers as a major obstacle to the DSU for practical systems.
The paper also reveals that these non-trivial transformers can
essentially be constructed by reassembling gadgets extracted
from existing source code. This paper presents the PASTA
tool and the experimental results show that PASTA can handle
7.5× non-trivial object transformers compared with the best
existing techniques, advancing the state-of-the-art effectiveness
on automated transformer synthesis for practical DSU.
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